2.6 Prove Statements About Segments and Angles

Goal: Write proofs using geometric theorems.

Given: 3x - 9 = 0, Prove: x = 3

Statements	Reasons
1. $3x - 9 = 0$	1. Given
2.3x = 9	Addition Postulate
3. x = 3	3. Division Postulate

The two-column proof is a formal way to organize your reasons to show a statement is true. The two-column proof has numbered statements on the left side, which are made one at a time until you reach the conclusion and corresponding reasons on the right side (which include definitions, properties, postulates, and theorems-statements that can be proven) that show an argument in logical order.

Use a property of equality to complete the statement.

1. If
$$m \angle 1 = m \angle 3$$
, then $m \angle 3 = \underline{?}$.

2. If
$$AB = CD$$
 and $CD = TU$, then ?. AB= TV

3. If
$$RS = WX$$
, then $? + AB = ? + AB$. 125, WX

4. If
$$m \angle EFG = 28^{\circ}$$
 and $m \angle GFH = 62^{\circ}$, then $? + 62^{\circ} = m \angle EFG + m \angle GFH$.

Solve. Give a reason for each step.

1.
$$-5x + 18 = 3x - 38$$

1.
$$-5x + 18 = 3x - 38$$
 2. $-3(x - 5) = 2(x + 10)$

Identify the property of equality.

3. If
$$m \angle 3 = m \angle 5$$
 and $m \angle 5 = m \angle 8$, then $m \angle 3 = m \angle 8$.

4. If
$$CD = EF$$
, then $EF = CD$.

Proof - an argument that uses logic to show that a statement is true

Two - column proof - a form of proof in which the statements are written in the left hand column and the reasons are written in the right hand column

> (Conclusions) (Justifications)

Statements Reasons

Given Definitions

> Properties Theorems

Prove Postulates

Congruence of Segments

Segment congruence is reflexive, symmetric, and transitive.

Reflexive For any segment AB, $\overline{AB} \cong \overline{AB}$.

Symmetric If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.

Transitive If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$.

Congruence of Angles

Angle congruence is reflexive, symmetric, and transitive.

Reflexive For any angle A, $\angle A \cong \angle A$.

Symmetric If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.

Transitive If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Name the property illustrated by the statement.

- If $\angle R \cong \angle T$ and $\angle T \cong \angle P$, then $\angle R \cong \angle P$.
- 2 If $\overline{NK} \cong \overline{BD}$, then $\overline{BD} \cong \overline{NK}$.
- $\overline{CD} \cong \overline{CD}$

Transitive

Symmetric Reflexive

Symmetric

Writing a Two-Column Proof

In a proof, you make one statement at a time, until you reach the conclusion. Because you make statements based on facts, you are using deductive reasoning. Usually the first statement-and-reason pair you write is given information.

Proof of the Symmetric Property of Angle Congruence

label given information to help develop proofs.

$(1. \angle 1 \cong \angle 2)$ 2. $m \angle 1 = m \angle 2$ 3. $m \angle 2 = m \angle 1$ 4. $\angle 2 \cong \angle 1$ The number of

statements will vary.

- REASONS 1. Given
- 2. Definition of congruent angles
- 3. Symmetric Property of Equality
- 4. Definition of congruent angles

Remember to give a reason for the last statement.

Definitions, postulates, or proven theorems that allow you to state the corresponding statement

Prove this property of midpoints: If you know that M is the midpoint of \overline{AB} , prove that AB is two times AM and AM is one half of AB.

M:s m:dpoint of AB
AM = MB

REASONS

Definition of Midpoint Segment Addition Postlete

Substitution Prop

Simplify/Combine Like Terms

DIVIDIM POP

HW: PG 108 #'s 3, 5-7, 8-12, 17, 18, 21, 24, 26

"I think you should be more explicit here in step two."

Geometry.notebook	September 26, 20