Chapter 4 More Derivatives

Chain Rule

Derivative of a Composite Function

Chain Rule:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad (f \circ g)' = f'(g(x)) \cdot g'(x)$$

EXAMPLE 2 Relating Derivatives

The polynomial $\underline{y} = 9x^4 + 6x^2 + 1 = (3x^2 + 1)^2$ is the composite of $\underline{y} = u^2$ and $u = 3x^2 + 1$. Calculating derivatives, we see that

$$y = (3x^{2} + 1)^{2}$$

$$y = h^{2} \qquad (x = 3x^{2} + 1)$$

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dy}{dx}$$

$$2h \cdot 6x$$

$$2(3x^{2} + 1)6x$$

$$12x(3x^{2} + 1)$$

$$y = 36x^{3} + 12x$$

RULE 8 The Chain Rule

If f is differentiable at the point u = g(x), and g is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

In Leibniz notation, if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$$

where dy/du is evaluated at u = g(x).

ex.
$$y = \sin(3x^2 + 1)$$
 $u = 3x^2 + 1$
 $y = \sin u$ $u = 3x^2 + 1$

$$\frac{dy}{dx} = \cos u$$

$$\frac{du}{dx} = 6x$$

$$\cos u \cdot \omega x$$

$$\cos (3x^2 + 1) 6x$$

$$6x \cos (3x^2 + 1)$$

ex.
$$y = \sin(3x^2 + 1)$$
 $u = 3x^2 + 1$

$$\frac{dy}{dx} = \cos(3x^2+1)6x$$
$$= 6x\cos(3x^2+1)$$

ex.
$$y = (x^3 + 3x^2)^4$$
 $u = x^3 + 3x^2$

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dx}{dx}$$

$$G = u^{4} \qquad u = \chi^{3} + 3\chi^{2}$$

$$G = u^{4} \qquad (3\chi^{2} + 6\chi)$$

$$= 4(\chi^{3} + 3\chi^{2})^{3}(3\chi^{2} + 6\chi)$$

ex.
$$y = (x^3 + 3x^2)^4$$
 $u = x^3 + 3x^2$

$$\frac{dy}{dx} = 4(x^3 + 3x^2)^3(3x^2 + 6x)$$

ex.
$$y = (x^3 + 3x^2)^4$$
 $u = x^3 + 3x^2$

$$f(x) = (4x^3 + 5x)^7$$
$$f'(x) = 7(4x^3 + 5x)^6 (12x^2 + 5)$$

Example: $f(g(x))=\sin(x^2-4)$

EXAMPLE 5 A Three-Link "Chain"

Find the derivative of $g(t) = \tan(5 - \sin 2t)$.

$$g(t) = tan(5-sin2t)$$

 $g'(t) = sec^{2}(5-sin2t)(-cos2t)2$
 $-2cos2tsec^{2}(5-sin2t)$

EXAMPLE 3 Applying the Chain Rule

An object moves along the x-axis so that its position at any time $t \ge 0$ is given by $x(t) = \cos(t^2 + 1)$. Find the velocity of the object as a function of t.

EXAMPLE 7 Finding Slope

- (a) Find the slope of the line tangent to the curve $y = \sin^5 x$ at the point where $x = \pi/3$.
- (b) Show that the slope of every line tangent to the curve $y = 1/(1 2x)^3$ is positive.

Multiple Choice Which of the following is dy/dx if

$$y = \cos^2(x^3 + x^2)$$
?

$$(A) -2(3x^2 + 2x)$$

(B)
$$-(3x^2 + 2x)\cos(x^3 + x^2)\sin(x^3 + x^2)$$

(C)
$$-2(3x^2 + 2x)\cos(x^3 + x^2)\sin(x^3 + x^2)$$

(D)
$$2(3x^2 + 2x) \cos(x^3 + x^2) \sin(x^3 + x^2)$$

(E)
$$2(3x^2 + 2x)$$

Multiple Choice Which of the following is dy/dx if

- $y = \tan(4x)$? E
- (A) $4 \sec (4x) \tan (4x)$ (B) $\sec (4x) \tan (4x)$ (C) $4 \cot (4x)$
- **(D)** $\sec^2(4x)$ **(E)** $4 \sec^2(4x)$

- 2. Which of the following gives $\frac{dy}{dx}$ if $y = \cos^3(3x 2)$?
- (A) $-9\cos^2(3x-2)\sin(3x-2)$
- (B) $-3\cos^2(3x-2)\sin(3x-2)$
- (C) $9\cos^2(3x-2)\sin(3x-2)$
- (D) $-9\cos^2(3x-2)$
- (E) $-3\cos^2(3x-2)$

56. Working with Numerical Values Suppose that functions f and g and their derivatives have the following values at x = 2 and x = 3.

х	f(x)	g(x)	f'(x)	g'(x)
2	8	2	1/3	-3
3	3	-4	2π	5

Evaluate the derivatives with respect to x of the following combinations at the given value of x.

(a)
$$2f(x)$$
 at $x = 2$

(b)
$$f(x) + g(x)$$
 at $x = 3$

(c)
$$f(x) \cdot g(x)$$
 at $x = 3$ (d) $f(x)/g(x)$ at $x = 2$

(d)
$$f(x)/g(x)$$
 at $x=2$

(e)
$$f(g(x))$$
 at $x = 2$ (f) $\sqrt{f(x)}$ at $x = 2$

(**f**)
$$\sqrt{f(x)}$$
 at $x = 2$

(g)
$$1/g^2(x)$$
 at $x = 3$

(g)
$$1/g^2(x)$$
 at $x = 3$ (h) $\sqrt{f^2(x) + g^2(x)}$ at $x = 2$

56. Working with Numerical Values Suppose that functions f and g and their derivatives have the following values at x = 2 and x = 3.

х	f(x)	g(x)	f'(x)	g'(x)	
2	8	2	1/3	-3	_
3	3	-4	2π	5	

Evaluate the derivatives with respect to x of the following combinations at the given value of x.

(a)
$$2f(x)$$
 at $x = 2$

(a)
$$2f(x)$$
 at $x = 2$ (b) $f(x) + g(x)$ at $x = 3$

(c)
$$f(x) \cdot g(x)$$
 at $x = 3$ (d) $f(x)/g(x)$ at $x = 2$

(d)
$$f(x)/g(x)$$
 at $x=2$

(e)
$$f(g(x))$$
 at $x = 2$ (f) $\sqrt{f(x)}$ at $x = 2$

(f)
$$\sqrt{f(x)}$$
 at $x = 3$

(g)
$$1/g^2(x)$$
 at $x = 3$

(g)
$$1/g^2(x)$$
 at $x = 3$ (h) $\sqrt{f^2(x) + g^2(x)}$ at $x = 2$

56. Working with Numerical Values Suppose that functions f and g and their derivatives have the following values at x = 2 and x = 3.

x	f(x)	g(x)	f'(x)	g'(x)
2	8	2	1/3	-3
3	3	-4	2π	5

Evaluate the derivatives with respect to x of the following combinations at the given value of x.

- (a) 2f(x) at x = 2 (b) f(x) + g(x) at x = 3
- (c) $f(x) \cdot g(x)$ at x = 3 (d) f(x)/g(x) at x = 2
- (e) f(g(x)) at x = 2 (f) $\sqrt{f(x)}$ at x = 2
- (g) $1/g^2(x)$ at x = 3 (h) $\sqrt{f^2(x) + g^2(x)}$ at x = 2

56. Working with Numerical Values Suppose that functions f and g and their derivatives have the following values at x = 2 and x = 3.

x	f(x)	g(x)	f'(x)	g'(x)
2	8	2	1/3	-3
3	3	-4	2π	5

Evaluate the derivatives with respect to x of the following combinations at the given value of x.

- (a) 2f(x) at x = 2 (b) f(x) + g(x) at x = 3
- (c) $f(x) \cdot g(x)$ at x = 3 (d) f(x)/g(x) at x = 2
- (e) f(g(x)) at x = 2 (f) $\sqrt{f(x)}$ at x = 2
- (g) $1/g^2(x)$ at x = 3 (h) $\sqrt{f^2(x) + g^2(x)}$ at x = 2

56. Working with Numerical Values Suppose that functions f and g and their derivatives have the following values at x = 2 and x = 3.

x	f(x)	g(x)	f'(x)	g'(x)
2	8	2	1/3	-3
3	3	-4	2π	5

Evaluate the derivatives with respect to x of the following combinations at the given value of x.

(a)
$$2f(x)$$
 at $x = 2$

(a)
$$2f(x)$$
 at $x = 2$ (b) $f(x) + g(x)$ at $x = 3$

(c)
$$f(x) \cdot g(x)$$
 at $x = 3$ (d) $f(x)/g(x)$ at $x = 2$

(**d**)
$$f(x)/g(x)$$
 at $x = 2$

(e)
$$f(g(x))$$
 at $x = 2$

(f)
$$\sqrt{f(x)}$$
 at $x = 2$

(g)
$$1/g^2(x)$$
 at $x = 3$

(e)
$$f(g(x))$$
 at $x = 2$ (f) $\sqrt{f(x)}$ at $x = 2$ (g) $1/g^2(x)$ at $x = 3$ (h) $\sqrt{f^2(x) + g^2(x)}$ at $x = 2$